Urban Computing

Dr. Mitra Baratchi
Leiden Institute of Advanced Computer Science - Leiden University

March 21, 2019

Universiteit
 Leiden
 The Netherlands

Third Session: Urban Computing - Machine learning

Agenda for this session

- Part 1: Machine learning for spatio-temporal data
- Part 2: Modeling spaces
- Spatial profiling
- Part 3: Modeling individual trajectories
- Trajectory clustering
- Trajectory forecasting
- Part 4: Modeling social trajectories
- Memory-based POI recommendation
- Model-based POI recommendation

Part 1: Machine learning for spatio-temporal data

Machine learning for spatio-temporal data

How can we use machine learning algorithms to deal with data of spatio-temporal nature?

Machine learning for spatio-temporal data

How can we use machine learning algorithms to deal with data of spatio-temporal nature?

- High dimensional (in time and space)
- Inherent patterns (spatial and temporal auto-correlation)
- Many types of imperfections (noise, missing data, inconsistent sampling rate)

Machine learning for spatio-temporal data

- Do we know any algorithm that is suited for high-dimensional data?
- Do you know any machine learning algorithm that is inherently aware of space (areas, distances, neighborhoods) and time (periodicity, durations, intervals, etc.)?
- Do you know any machine learning algorithm that is inherently robust to noise, missing data, etc.?

Questions we often need to answer

- How to define the machine learning task for a given problem?
- Representation
- Similarity measure?
- Objective function?
- Unsupervised learning \leftarrow More popular approach
- Requires thinking about a means for evaluating the performance
- How to find algorithms that are both aware of space and time?
- How to deal with data imperfections algorithmically?

Data look

What are different ways we can look at trajectory data?

Query type	Location	EntityID	time
1	Fixed	Fixed	Variable
2	Fixed	Variable	Variable
3	Variable	Fixed	Variable
4	Variable	Variable	Variable

Table: Different ways of looking at trajectory data

Part 2: Modeling spaces

What are different ways we can look at trajectory data?

Query type	Location	Entity	time
1	Fixed	Fixed	Variable
2	Fixed	Variable	Variable
3	Variable	Fixed	Variable
4	Variable	Variable	Variable

Table: Different ways of looking at trajectory data

Research directions:

- Spatial patterns
- Point of interest labeling

Example: Spatial profiles, spatial fingerprints (Spaceprints)

Profiling locations

- Given:
- Data in form of $\left\{\left\langle s_{i}, e_{j}, t\right\rangle \mid i \in 1 \ldots N, j \in 1 \ldots M, t \in 1 \ldots T\right\}$
- Objective:
- Creating profiles for each space s_{i}
- Each space should have a unique profile
- Profiles reflect functions of spaces
- Restaurant
- Cafe
- Classroom

How does the data look like?

- Detections of entities with unique identifiers in a space
- How do we compare spaces to each other based on this form of data?

time
- How to represent data? Instances, attributes?

How does the data look like?

- Detections of entities with unique identifiers in a space
- How do we compare spaces to each other based on this form of data?

time
- How to represent data? Instances, attributes?

Creating instances and attributes

Option 1:

- Instances: Each day in a space
- Attributes: Hourly densities

1	1	1	5	5	4	4	2

Entity ids

Figure: Density-based features

Example: What does the profile of cafes look like?

If we collect data from different cafes, how can we use such data to create profiles for them so that we see their similarities?

What features define a space?

What people do in cafes?

- Meeting
- Take away coffee
- Work
- Watching sport matches (a cafes next to a sport center)

How can we capture these activities in form of features?

What features define a space?

What people do in cafes?

- Meeting
- Take away coffee
- Work
- Watching sport matches (a cafes next to a sport center) How can we capture these activities in form of features? possibly people being present synchronously in different windows over time?
- Density based features do not represent them

Windows over time

Where can presences over time happen?

time

Windows over time

time

Many possible windows

Example: Windows over time

Entity ids

time

Example: Windows over time

\square

Entity ids

time

- Looking at these windows and see who is present in them

Example: Windows over time

\square

Entity ids

- Looking at these windows and see who is present in them
- We need to determine how to count within a window

Example: Windows over time

Entity ids

Presence in a window is considered together with a resolution of counting

Example: Windows over time

Entity ids

Example: Windows over time

time

Example: Windows over time

Entity ids

time

- Many groups are possibly formed \rightarrow in real world each group can be formed following a common activity
- If the activity is recurring, it can be part of the profile or fingerprint of the space

Resolution of windows

- We are not sure about the frequency with which devices are being detected. This is device dependent.
- Number of entities in the same window can be considered using different resolutions.

$$
\begin{array}{|l|r|r|r|r|r|}
\hline \checkmark \mid \checkmark
\end{array}
$$

\square

Creating instances and attributes

Option 2: Spaceprints feature vector [BHvS17]

- Instances: Each day in a space
- Attributes: The number of devices being present in windows w with variable:
- Starting time $t_{\text {start }}$
- Duration τ
- Sampling resolution t_{s}

Feature vector

If we calculate all possible features according to same template, we will have a feature vector

Figure: ${ }^{1}$

Space profiles

Figure: (Left) Option 2: feature vectors acquired from Spaceprint (right) Option 1: feature vectors acquired from density based counting. ${ }^{2}$

[^0]Part 3: Modeling individual trajectories

What are different ways we can look at trajectory data?

Query type	Location	Entity	time
1	Fixed	Fixed	Variable
2	Fixed	Variable	Variable
3	Variable	Fixed	Variable
4	Variable	Variable	Variable

Table: Different ways of looking at trajectory data

Research directions

- Trajectory clustering
- Trajectory prediction

Example 1: clustering trajectories

Objective

- Given:
- A set of trajectories presented in form of multi-dimensional points $\operatorname{Tr}=p_{1}, p_{2}, p_{3} p_{n}$.
- A point p_{i} is 2 -dimensional entity (x, y).
- Trajectories segmented to day level
- Objective:
- We look for clusters representing frequent patterns
- Clusters represent the most visited path
- Road segment

What clustering algorithms exist? Which ones can be useful?

Density-based clustering

Very popular in trajectory data mining

- Clustering based on density (local cluster criterion), such as density connected points
- Each cluster has a considerably higher density of points
- Advantage: easier parameter setting compared to algorithms such as K-means:
- You do not need to define K.

DBSCAN

- DBSCAN: Density-based spatial clustering of applications with noise
- Two parameters
- Eps (ϵ): Maximum radius of the neighborhood from a point
- MinPts: Minimum number of points in an Eps-neighborhood of that point

DBSCAN: Core, Border and Noise Points

- $N_{\epsilon}(q):\{p \mid \operatorname{dist}(p, q) \leq \epsilon\}$
- Directly density-reachable: A point p is directly density-reachable from a point q wrt. ϵ, MinPts if
- p belongs to $N_{\epsilon}(q)$
- core point condition $\left|N_{\epsilon}(q)\right|>=$ MinPts

Trajectory clustering

- DBSCAN for trajectory clustering
- Option 1:
- Take trajectories as data instances
- Modify DBSCAN to cluster trajectories

Issues with option 1

- Trajectory partitions: If we consider only complete trajectories, we miss valuable information on common Sub-trajectories.
- Finding the characteristic point of trajectories
- Similarity measure: How to measure the distance between trajectories

Option 2: Traclus: An example of using DBSCAN for trajectory clustering [LHW07]

Challenge

Figure: How to find common sub-trajectories?

- Data instances for DBSCAN should represent sub-trajectory candidates
- Partition trajectories to simple line segments first

Distance function

Now we need a way to measure the distance between line segments?

Distance measure

$-\operatorname{Dist}\left(L_{i}, L_{j}\right)=w_{\perp} \cdot d_{\perp}\left(L_{i}, L_{j}\right)+w_{\| \mid} \cdot d_{\|}\left(L_{i}, L_{j}\right)+d_{\theta} \cdot\left(L_{i}, L_{j}\right)$

- Perpendicular distance: $d_{\perp}=\frac{l_{\perp}^{2}+l_{12}^{2}}{l_{\perp 1}+l_{\perp 2}}$
- Parallel distance: $d_{\|}=\operatorname{Min}\left(l_{| | 1}, l_{| | 2}\right)$
- Angle distance: $d_{\theta}=\left\|L_{k}\right\| \sin (\theta)$

Final solution:

Partition and group framework:

- Partition trajectories
- Cluster line segments using DBSCAN modified based on the new similarity measure

Example 2: trajectory forecasting

Objective

- Given:
- A set of trajectories presented in form of multidimensional points $\operatorname{Tr}=p_{1}, p_{2}, p_{3} p_{n}$.
- A point p_{i} is 2 -dimensional entity (x, y).
- Objective:
- We want to forecast future points of the trajectory

$$
\operatorname{Tr}=p_{n+1}, p_{n+2}, \ldots
$$

What algorithms do we know that can capture temporal aspects?
Which ones can be used for forecasting?

Algorithms we can use?

Some algorithms that are aware of time (sequential order)

- Dynamic Bayesian networks: a Bayesian network which relates variables to each other over adjacent time steps.
- Hidden markov model

Markovian process

- A Markov process can be thought of as memory-less
- The future of the process is solely based on its present state just as well as one could know the process's full history.
- The nth observation in a chain is influenced only by the $n-1$ observation

$$
p\left(x_{n} \mid x_{1}, \ldots, x_{n-1}\right)=p\left(x_{n} \mid x_{n-1}\right)
$$

Hidden Markov model

- X - States
- Y-Observations
- A - State transition probabilities
- $a_{i j}$ is probability of transition from state i to j
- B - output probabilities
- $b_{i j}$ is probability emission state i to observation j
- π Initial state

Hidden Markov Model

- Option 1: using Hidden Markov Model to model trajectories \rightarrow instances are points on trajectories
- Issue with Option 1:
- Trajectories are composed of movements with high speed and almost zero speed
- Staying at home for 5 hours, being at work for 8 hours, ...
- States are meaningful if the durations is considered \rightarrow Hidden semi Markov model considers an extra duration distribution for states

Hidden semi Markov Model

Give instances as ordered trajectory points in time the following model parameters should be calculated:

- A (transitions matrix)
- B (emission matrix)
- Π (initial state vector)
- D (State duration distribution)

How to estimate model parameters?

- Different algorithms:
- Baum welch
- Viterbi,
- etc

Hierarchical HSMM on human mobility data $\left[\mathrm{BMH}^{+} 14\right]$

We will be able to find:

- Super states with duration of weekdays and week ends
- States with the duration of hours of stay in different locations

Day type 1

Example of Hierarchical HSMM on Geolife data

(a)

(b)
(c)

Part 3: Modeling social trajectories

What are different ways we can look at trajectory data

Query type	Location	Entity	time
1	Fixed	Fixed	Variable
2	Fixed	Variable	Variable
3	Variable	Fixed	Variable
4	Variable	Variable	Variable

Table: Different ways of looking at trajectory data

Research directions:

- Understanding users interests based upon their locations.
- Understanding locations functions via user mobility.
- Point of interest (POI) recommendation

POI recommendation

- Given:
- Given data $U=\left\{u_{1}, u_{2}, . . u_{n}\right\}$ a set of users, and $L=\left\{I_{1}, l_{2}, \ldots I_{m}\right\}$ a set of POls, and $C=\left\{c_{1,1}, \ldots, c_{i, j}\right\}$ a set of check-in of users in POls where $c_{i, j}$ denotes the number of times user u_{i} checked in l_{j}
- Objective:
- Recommending a location to a user through inferring the preference of the user to check-in to a location they have not checked-in before
- Predicting will this user ever check-in to a POI (time is not that important)
- Performance is typically measured through precision and recall of top K recommended locations

POI recommendation

- Recommender systems are information filtering systems which attempt to predict the rating or preference that a user would give, based on ratings that similar users gave and ratings that the user gave on previous occasions.
- Many different types of Location-Based Social Networks (LBSN) (Foursquare, Brightkite, Gowalla)
- These are the context information we want the recommender system for LBSN to be aware of

Challenges pf POI recommendation

- Implicit feedback: check-ins, visits rather than explicit feedback in form of ratings
- Data sparsity: A lot of places do not have visit data, For example, the sparsity of Netflix data set is around 99%, while the sparsity of Gowalla is about $2.08 \times 10^{-4} \%$
- Cold start:
- New locations have no ratings
- New users have no history
- Context: we want the algorithms to be aware of:
- Spatial influence
- Social influence
- Temporal influence

What recommendation algorithms exist? Which ones can be useful?

Collaborative filtering

- Memory-based
- User-based
- Item-based
- Model-based
- Matrix factorization
- SVD

Example 1: Memory-based POI recommendation

Memory-based

- Memory-based: Uses memory of past ratings
- K-nearest neighbor: Using data of nearest neighbors
- Predicting ratings by getting an average of ratings:
- User-based: ratings based on a user's most similar neighbors
- Item-based: ratings of a user based on an item's most similar neighbors

User-user collaborative filtering

We need to measure the similarity between users based on their check-in history

- The first component of user-based POI recommendation algorithm is determining how to compute the similarity weight $\operatorname{sim}(u, v)$ between user u and v.

Collaborative filtering, similarity

	item $_{1}$	item $_{2}$	item $_{3}$	item $_{4}$	item $_{5}$	item $_{6}$	item $_{3}$
u_{1}	4			5	1		
u_{2}	5	5	4				
u_{3}				2	4	5	
u_{4}		3					3

- Consider u_{i} and u_{j} with rating vectors r_{i} and r_{j}
- Intuitively capture this: $\operatorname{sim}\left(u_{1}, u_{2}\right)>\operatorname{sim}\left(u_{1}, u_{3}\right)$

Cosine similarity

	item $_{1}$	item $_{2}$	item $_{3}$	item $_{4}$	item $_{5}$	item $_{6}$	item $_{3}$
u_{1}	4			5	1		
u_{2}	5	5	4				
u_{3}				2	4	5	
u_{4}		3					3

$\triangleright \operatorname{sim}\left(u_{i}, u_{j}\right)=\frac{r_{i} \cdot r_{j}}{\left\|r_{i}\right\|\left\|r_{j}\right\|}=\frac{r_{i} \cdot r_{j}}{\sqrt{\sum_{i} r_{i}^{2}} \sqrt{\sum_{i} r_{j}^{2}}}$

Cosine similarity

	item $_{1}$	item $_{2}$	item $_{3}$	item $_{4}$	item $_{5}$	item $_{6}$	item $_{3}$
u_{1}	4			5	1		
u_{2}	5	5	4				
u_{3}				2	4	5	
u_{4}		3					3

- $\operatorname{sim}\left(u_{i}, u_{j}\right)=\frac{r_{i} \cdot r_{j}}{\left\|r_{i}\right\|\left\|r_{j}\right\|}=\frac{r_{i} \cdot r_{j}}{\sqrt{\sum_{i} r_{i}^{2}} \sqrt{\sum_{i} r_{j}^{2}}}$
- replace empty with 0

Cosine similarity

	item $_{1}$	item $_{2}$	item $_{3}$	item $_{4}$	item $_{5}$	item $_{6}$	item $_{3}$
u_{1}	4			5	1		
u_{2}	5	5	4				
u_{3}				2	4	5	
u_{4}		3					3

- $\operatorname{sim}\left(u_{i}, u_{j}\right)=\frac{r_{i} \cdot r_{j}}{\left\|r_{i}\right\|\left\|r_{j}\right\|}=\frac{r_{i} r_{j}}{\sqrt{\sum_{i} r_{i}^{2}} \sqrt{\sum_{i} r_{j}^{2}}}$
- replace empty with 0
- $\operatorname{sim}\left(u_{1} u_{2}\right)=0.38, \operatorname{sim}\left(u_{1}, u_{3}\right)=0.32$

Cosine similarity for check-ins

If we replace the rating vector by the user's check-in vector we can measure similarities

- Check-ins are often very sparse, we can consider binary check-in vectors
- $c_{i j}=1$ if user u_{i} has checked in $l_{j} \in L$ before
- The cosine similarity weight between users u_{i} and u_{k},
- $w_{i k}=\frac{\sum_{l_{j} \in L} c_{i j} c_{k j}}{\sqrt{\sum_{l_{j} \in L} c_{i j}{ }^{2}} \sqrt{\sum_{l_{j} \in L} c_{k j}{ }^{2}}}$
- Recommendation score based on k most similar users
- $\hat{c}_{i j}=\frac{\sum_{u_{u^{\prime}}} w_{i k} \cdot c_{k j}}{\sum_{u_{k}} w_{i k}}$

Context: Geographic influence

- How to include geographical influences?
- The Toblers First Law of Geography is also represented as geographical clustering phenomenon in users check-in activities.

Context: Geographic influence

- How to include geographical influences?
- The Toblers First Law of Geography is also represented as geographical clustering phenomenon in users check-in activities.
- Users prefer to visit nearby POls rather than distant ones; people tend to visit POIs close to their homes or offices
- People may be interested in visiting POls close to the POI they are in favor of even if it is far away from their home; users may be interested in POls surrounded a POI that users prefer.

Power-law geographical model [YYLL11]

- Check-in probability follows power law distribution
- $y=a \times x^{b}$
- x and y refer to the distance between two POls visited by the same user and its check-in probability
- a and b are parameters of power law distribution
- For a given POI $l j$, user u_{i}, and her visited POI set L_{i}, the likelihood probability for u_{i} to check in l_{j} as follows
- $P\left(I_{j} \mid L_{i}\right)=\frac{P\left(\jmath_{j} \cup L_{i}\right)}{P\left(L_{i}\right)}=\prod_{l_{y} \in L_{i}} P\left(d\left(\jmath_{j}, l_{y}\right)\right)$

Figure: Check-in probabilities may follow a power law distribution

Other ways of considering geographic influence [YC15]

- Power-law based model
- Distance based model
- Multi-center Gaussian model

Multi-center geographical influence

Geographical influence, multi-center

- Check-ins happen near a number of centers
- Work area
- Home area
- etc.

Multi-center geographical influence

- Probability of check-in of user u in location /
- Probability of I belonging to any of those centers
- $P\left(I \mid C_{u}\right)=\sum_{C_{u}=1}^{\left|C_{u}\right|} P\left(I \in c_{u}\right) \frac{f_{c_{u}}^{\alpha}}{\sum i \in C_{u} f_{i}^{\alpha}} \frac{N\left(I \mid \mu c_{u}\right), \sum_{c_{u}}}{\sum_{i \in C_{u}} N\left(I \mid \mu_{i}, \sum_{i}\right)}$
- Where $P\left(I \in c_{u}\right)=\frac{1}{d\left(1, c_{u}\right)}$ is the probability of $\mathrm{POI} /$ belonging to the center c_{u},
- $\frac{f_{c_{u}}^{\alpha}}{\sum_{i \in C_{u}} f_{i}^{\alpha}}$ is the normalized effect of check-in frequency on the center c_{u} and parameter α maintains the frequency aversion property
- $N\left(I \mid \mu C_{u}\right)$ is the probability density function of Gaussian distribution

Social influence

- Depending on a source, social information may also be available which can be used to improve the recommendation performance
- The social influence weight between two friends u_{i} and u_{k} based on both of their social connections and similarity of their check-in activities
- $S I_{k j}=\nu \cdot \frac{\left|F_{k} \cap F_{i}\right|}{\left|F_{k} \cup F_{i}\right|}+(1-\nu) \frac{\left|L_{k} \cap L_{i}\right|}{\left|L_{k} \cup L_{i}\right|}$
- ν is a tuning parameter ranging within $[0,1]$
- F_{k} and L_{k} denote the friend set and POI set of user u_{k}

How to put all information in one model?

A recommender system which has embedded all these influences?

How to put all information in one model?

A recommender system which has embedded all these influences?

- Fused model: The fused model fuses recommended results from collaborative filtering method and recommended results from models capturing geographical influence, social influence, and temporal influence.

Fused model

- Check-in probability of user i in location j :
- $S_{i, j}=(1-\alpha-\beta) S_{i, j}^{u}+\alpha S_{i, j}^{s}+\beta S_{i, j}^{g}$
- $S_{i, j}^{\mu}, S_{i, j}^{s}, S_{i, j}^{g}$ are user preference, social influence, and geographical influence
- where $(\alpha$ and $\beta)(0 \leq \alpha+\beta \leq 1)$ are relative importance of social influence and geographical influence

Example 2: Model based POI recommendation

Model-based recommendation

- Latent variable models: how to model users and items without having any features?
- Build the hidden model of a user: what a user looks for in an item?
- Build the hidden model of an item: what does it offer?
- Methods:
- Matrix factorization
- Singular value decomposition

Factorization: Latent factor models

Assume that we can approximate the rating matrix R as a product of U and P^{T}

	p_{1}	p_{2}	p_{3}	p_{4}
u_{1}		4.5	2	
u_{2}	4.0		3.5	
u_{3}		5.0		2.0
u_{4}		3.5	4.0	1.0

$(k=2)$ factors		
	1.2	0.8
	1.4	0.9
	u_{2}	1.4
u_{3}	1.5	1.0
	u_{4}	1.2

How do we find Q and P

- Singular value decomposition SVD
- ...

SVD (Singular value decomposition)

- Σ is a diagonal where entries are positive and sorted in decreasing order
- U and V are column orthogonal: $U^{T} U=I, V^{T} V=I$
- This leads to a unique decomposition U, V, Σ

Optimizing by solving this problem

- Find matrices U and Σ and V that minimize this expression
$-\min _{U, V, \Sigma} \sum_{i, j \in A}\left(A_{i j}-\left[U \Sigma V^{T}\right]_{i j}\right)^{2}$
- In case of sparse matrices we have to makes sure that error is calculated on the non-zero elements

How to include other context in a matrix factorization model?

- Joint model: The joint model establishes a joint model to learn the user preference and the influential factors together

Joint model

Two different types of joint models:

- Incorporating factors (e.g., geographical influence and temporal influence) into traditional collaborative filtering model like matrix factorization and tensor factorization
- Generating a graphical model according to the check-ins and extra influences like geographical information.

Joint geographical modeling and matrix factorization

Augment user's and POI's latent factors with geographical influence

- Activity areas of a user are determined by the grid area where the user may show up and a number indicating the possibility of appearing in that area
- Influence areas of a POI is a collection of pairs of a grid area to which the influence of this POI can be propagated and a number indicating the quantity of influence from this POI.

Joint geographical modeling and matrix factorization

 [LZX $\left.{ }^{+} 14\right]$

Figure: Geo matrix factorization

- MF: $R=U P^{T}$
- GeoMF: $R=U P^{T}+X Y^{T}$
- X is users' activity area matrix
- Y is POIs' influence area matrix

Generating influence areas

Figure: Generating influence areas for POls

End of theory!

References I

國 Mitra Baratchi, Geert Heijenk, and Maarten van Steen, Spaceprint: A mobility-based fingerprinting scheme for spaces, Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (New York, NY, USA), SIGSPATIAL '17, ACM, 2017, pp. 102:1-102:4.
国
Mitra Baratchi, Nirvana Meratnia, Paul JM Havinga, Andrew K Skidmore, and Bert AKG Toxopeus, A hierarchical hidden semi-markov model for modeling mobility data, Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, ACM, 2014, pp. 401-412.

References II

囯 Jae－Gil Lee，Jiawei Han，and Kyu－Young Whang，Trajectory clustering：a partition－and－group framework，Proceedings of the 2007 ACM SIGMOD international conference on Management of data，ACM，2007，pp．593－604．

婳 Defu Lian，Cong Zhao，Xing Xie，Guangzhong Sun，Enhong Chen，and Yong Rui，Geomf：joint geographical modeling and matrix factorization for point－of－interest recommendation， Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining，ACM， 2014，pp．831－840．

婳 Yonghong Yu and Xingguo Chen，A survey of point－of－interest recommendation in location－based social networks，Workshops at the Twenty－Ninth AAAI Conference on Artificial Intelligence， 2015.

References III

R
Mao Ye, Peifeng Yin, Wang-Chien Lee, and Dik-Lun Lee, Exploiting geographical influence for collaborative point-of-interest recommendation, Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval, ACM, 2011, pp. 325-334.

[^0]: ${ }^{2}$ Image sources: [BHvS17]

